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T2. Memristors and NVRAM

Introduction. Non-volatile random access memory
NVRAM (Non-Volatile Random Access Memory) is a type of random access memory capable of storing
information in the absence of electrical power. The ability to independently access information in any
memory cell at any time and to store data without constant power supply opened huge technological
capabilities at the time of its invention, and we still use it today (Fig. 1).

Fig. 1. NVRAM in your pocket

There are several types of NVRAM. The most popular of them are
based on semiconductor elements, and therefore are difficult to con-
sider. In this task, we will examine both a promising realization of
NVRAM – ReRAM (Resistive Random Access Memory) based on
memristors, and a realization that have already almost disappeared
into the past – ferroelectric memory (FeRAM, Ferroelectric Random
Access Memory) based on segnetoelectrics.

Part A. Memristor
In 1971, Prof. Leon O. Chua published a theoretical justification for
the possibility of a memristor – an electrical element in which the
relationship between voltage and current depends on the total charge flowing through the element.

Fig. 2. Schematic depiction of the relationship between different electromagnetic quantities in various electronic
components. Usually, this scheme is cited as part of the theoretical justification of the possibility of the existence
of a memristor

Memristor-based computing systems are currently attracting serious attention of researchers in the field of
artificial intelligence, as they work on principles similar to the neurons of the human brain and can poten-
tially achieve the same results with much lower energy consumption and relative architecture simplicity.
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Fig. 3. Atomic force microscope to-
pographical scan of memristor pro-
totype created by HP

For a long time, the memristor existed only ”on paper”, until in 2008
Hewlett-Packard presented the first working prototype of a memristor.
In this prototype, the change in resistance depending on the flowing
charge was achieved due to electrochemical reactions occurring in the
contact area of two different materials (Fig. 3).

Since electrochemical reactions are reversible, the resistance of this
prototype memristor tends towards its equilibrium value in the absense
of current. For the simplest theoretical description of such a memristor,
we can use the Williams–Strukov equations:

R(x) = Roff(1− x) +Ronx
dx

dt
=

1

β
I − αx

Here x is some parameter determined by the internal state of the system, α, β > 0 are known quantities,
I is current through the memristor, Roff and Ron = rRoff (r ≫ 1) are the resistances of the memristor in
the ”off” and ”on” states, respectively.

Let’s first consider the evolution of the memristor state under a constant voltage U > 0. Initially, the
memristor is ”off” (i.e. x = 0).

A1 Obtain a differential equation on x(t). Express your answer in terms of U , Roff, r, α, and β.

For convenience, let’s introduce ξ ≡
r − 1

βRoff
. We will assume that the memristor is on if the value of its

internal parameter x differs from the equilibrium one by no more than 10%. For simplicity in all the
remaining points of this part, work in the limit of large voltages U .

A2 Simplifying the equation from A1 in this limit, find the minimum value of x0 at which the
memristor can be considered to be on. Express your answer in terms of ξ, U , α, and r.

A3 Find the time τ required to switch the memristor from the initial off state to the on state.
Express the answer in terms of α.

A4 Find the minimal energy Q requires to switch the memristor from the initial off state to the on
state. Express your answer in terms of U , α, ξ, and Roff.

Part B. Memristor hysteresis

Fig. 4. Memristor hysteresis loops
on different frequencies

If an an oscillating voltage is applied to the memristor, its resistance
will also oscillate due to fluctuations in current and charge flowing
through it. Because of this, at the same voltage, the current through
the memristor will depend on whether the voltage increases or de-
creases. In I − U coordinates, this behavior will look like hysteresis
loops (Figure 4). It turns out that by measuring the characteristics of
these loops it is possible to calculate some important parameters of the
memristor, which we will do in this part.

Suppose an oscillating voltage U cosωt is applied to the memristor, and
U > 0.
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B1 Find x(t) in the first-order approximation by
U

βRoff

√
ω2 + α2

≪ 1. From here, find (also to a

first-order approximation), ∆I(φ) – the absolute difference in currents on different branches of
the hysteresis loop at the same voltage U cosφ. Express your answers in terms of U , Roff, α,
β, r, and ω.

Let’s introduce the hysteresis loop width as:

s = max
φ

∆I(φ)

2I0
,

where I0 is the amplitude of the current oscillations.

B2 Express s in terms of ω, α, U , and ξ.

Since the hysteresis curve width is easy to measure, it can be used to determine the parameters of the
memristor. The table below shows the dependence of s on the frequency f of the voltage applied to the
memristor at voltage U = 1 V .

f, Hz 100 250 500

s, 10−3 47.8 54.1 36.7

Also, the resistance of the memristor Roff = 300 Ω was measured in the off state.

B3 From this data, calculate α and ξ with three significant figures.

Part C. ReRAM energy efficiency
The information is written to the prototype memristor element under a voltage of U = 5 V .

C1 Calculate with two significant figures the time τ in which the write takes place.

C2 Calculate with two significant figures the minimum amount of energy Q required to write one
bit of information.

As you can see, the researchers at HP are still pretty far from perfect...

Part D. Segnetoelectrics and FeRAM
In most materials, polarization is identically equal to zero in the absence of an external field. However,
there is a class of materials called segnetoelectrics that remain polarized even when no field is applied.
The ability to store information in the direction of polarization and to read and rewrite it easily was the
basis for the creation of ferroelectric memory (FeRAM). In this part of the task we will investigate these
properties of segnetoelectrics in detail.

The volume energy density W in a segnetoelectric depends on the polarization P and the external electric
field E as:

W(P ) = −aP 2 + bP 4 − PE,
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where a, b > 0 are material-specific quantities. The equilibrium values of polarization are determined by
local minima of W(P ). In the absence of an external field, there are two equilibrium states of a segne-
toelectric with the same energy, transitions between which are impossible, which is used for information
storage.

Consider a segnetoelectric material that is initially in the state with negative P , and at some moment the
external electric field is switched on and starts to increase. Then, when the field reaches some critical value
Ecr, the local minimum with smaller polarization disappears and the system jumps to the only remaining
equilibrium state, dissipating at this moment the energy Q = −∆W per unit volume in the form of heat.
If the external field is then slowly turned off, the system will move to an equilibrium state with positive
P (that is, its state will change). This is used to record information.

D1 Find at what critical field Ecr one of the equilibrium states of the segnetoelectric in the above
situation disappears. What is the polarization Pcr in this state just before the ”disappearance”?
Express your answers in terms of a and b.
Hint: consider the second derivative of energy density at the moment of ”disappearance”.

D2 What polarization Pafter will the segnetoelectric have right after the ”jump”? Express your
answer in terms of a and b.

D3 Find the dissipated energy Q per unit volume. Express your answer in terms of a and b.

The first commercial FeRAM samples used lead zirconate titanate, for which a = 1.9 · 105
J · m
C2 and

b = 1.7 · 103
J · m5

C4 . The memory cells were fabricated on a l = 350 nm process, which can be used to
estimate the cell volume.

D4 What amount of energy Q1 TiB is required to write 1 TiB = 243 bits of data to FeRAM? Express
your answer in terms of a, b, and l. Calculate this quantity with two significant figures.
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Solution
A1. By plugging in I = U/R(x) into the second Williams–Strukov equation, we obtain:

dx

dt
=

U

βRoff

1

1 + (r − 1)x
− αx

A2. The stationary value of x can be found by solving the equation
dx

dt
= 0 =⇒

U

βRoff

1

1 + (r − 1)|x|
= αx.

From this one can see that in the limit of large U the stationary value of x will also be large, so we can
neglect 1 in the denominator. From this we get:

x2 =
U

αβRoff(r − 1)
=

Uξ

α(r − 1)2
=⇒

x0 =
9

10(r − 1)

√
Uξ

α

A3. In the limits of large U the equation from A1 can be rewritten in the form:

dx

dt
=

U

βRoff(r − 1)

1

x
− αx

y=
αβ(r−1)Roff

U
x2

=⇒ dy

1− y
= 2α dt =⇒

2ατ =

0.81∫
0

dy

1− y

τ =
ln(100/19)

2α
≈ 0.830α−1

A4. Minimal energy is equal to Joule heat dissipation during the off-to-on switch:

Q =

τ∫
0

U2

R(x(t))
dt = U2

x0∫
0

dx

(r − 1)Roffx
[

U
β(r−1)Roffx

− αx
] z=

√
αβ(r−1)Roff

U
x

=
U3/2

Roff
√
αξ

0.9∫
0

dz

1− z2
=⇒

Q =
U3/2 arth 0.9

Roff
√
αξ

≈ 1.47
U3/2

Roff
√
αξ

B1. As the term with current in the second Williams–Strukov equation is already the next order by
the aforementioned quantity, we can plug in the zeroth-order approximation for current which is simply
U cosωt

Roff

, so that:

dx

dt
=

U cosωt

βRoff
− αx.

Substituting x(t) = A cosωt+B sinωt, we obtain:
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x(t) =
U

βRoff(ω2 + α2)

[
α cosωt+ ω sinωt

]
The difference δI(t) between actual current and zeroth-order value U(t)/Roff can be calculated as:

δI(t) =
U cosωt

Roff

[
1− 1

1 + (r − 1)x

]
=

(r − 1)U2

βR2
off(ω

2 + α2)

[
α cosωt+ ω sinωt

]
cosωt

Then:
∆I(φ) = |δI(φ/ω)− δI(−φ/ω)| =⇒

∆I(φ) =
(r − 1)ωU2

βR2
off(ω

2 + α2)
| sin 2φ|

B2. Because max
φ

| sin 2φ| = 1, and in the zeroth order I0 = U/Roff =⇒

s =
ωUξ

2(ω2 + α2)

B3. The dependency of
ωU

2s
vs ω2 is linear with a slope of 1/ξ and intersept α2/ξ. We can find the answers

using the least squares method:

f, Hz s, 10−3 ω, rad/s ω2, 106 rad2/s2 ωU/2s, 103 rad · V/s

100 47.8 628 0.395 6.57

250 54.1 1571 2.467 14.52

500 36.7 3142 9.870 42.80

1

ξ
= 3.82 · 10−3 s · V−1,

α2

ξ
= 5.07 · 103 s−1 · V−1 =⇒

α = 1.15 · 103 s−1, ξ = 2.62 · 102 V−1 · s−1

C1. Using the result of A3, we obtain:

τ = 7.2 · 10−4 s

C2. Using the result of A4, we obtain:

Q = 1.0 · 10−4 J

D1. Equilibrium states can be found by solving the equation:

∂W
∂P

= 0,
∂2W
∂P 2

> 0.
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As we pass the critical field, one of equilibrium states disappears, which means that the derivative ∂W/∂P
no longer crosses zero at this point. This means that at the critical field this derivative only touches zero,
so at this point:

∂2W
∂P 2

= 0.

And we conclude that one of equilibrium states disappears at the point (don’t forget that we take P < 0):
∂W
∂P

= −2aP + 4bP 3 − E = 0

∂2W
∂P 2

= −2a+ 12bP 2 = 0
=⇒

Pcr = −
√

a

6b
, Ecr =

2a

3

√
2a

3b

D2. We basically need to find a root of a cubic equation

−2aP + 4bP 3 − 2a

3

√
2a

3b
= 0,

when we know its root Pcr = −
√

a/6b of multiplicity 2. Simlply dividing by (P − Pcr)
2, we get:

Pafter =

√
2a

3b

D3. Plugging in expressions obtained in the previous tasks:

Q = W(Pcr)−W(Pafter) =

= −2a

3

√
2a

3b

(√
2a

3b
+

√
a

6b

)
− a

(
2a

3b
+

a

6b

)
+ b

([
2a

3b

]2
+
[ a
6b

]2)
=⇒

Q =
3a2

4b

D4. To write one bit of data we generally need energy of the order:

Q1 bit = Ql3.

Then, to write the whole 1 TiB, we would need:

Q1 TiB =
3 · 241l3a2

b
= 6.0 J


