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T1. Thermal oxidation
Thermal oxidation is the process of creating a very thin (tens/hundreds of nanometres) film of silicon
dioxide SiO2 on the surface of silicon Si at high temperatures. This technology is an essential part of
the manufacturing process of integrated circuits and MOSFETs (metal-oxide-semiconductor), which form
the basis of modern electronics. If you place silicon Si in an aerobic environment, the oxidation process
of Si + O2 → SiO2 will begin. For the description of crystalline silicon and flat oxide films of sufficient
thickness (starting from ten nanometres), the Dill-Grove model (1965) does well, but a detailed description
of the growth mechanism in other conditions is still an unsolved scientific problem.

Silicon is opaque to visible light, while its dioxide is transparent. These optical properties, combined with
the fact that the dioxide film has a thickness of tens of nanometres, create ideal conditions for very precise
optical control of the thickness of the SiO2 layer.

The change in the visible color of the silicon substrate at different oxidation times.
”Growing Colorful Oxide Layers on Silicon” by ProjectsInFlight on YouTube.

We will investigate the film growth by using ellipsometry, a powerful technique for studying the optical
properties of thin films. It is based on a comparison of the amplitude coefficients of reflection of s-polarized
and p-polarized waves (from the German ”senkrecht” – perpendicular, ”parallel” – parallel) from the surface
of the film. The measurement results are represented by ellipsometric angles Ψ, ∆:

rp
rs

= tanΨ · ei∆,

where the value of Ψ corresponds to the ratio of amplitudes upon reflection of p- and s-polarized waves,
and the value of ∆ corresponds to the phase difference between them.

Ellipsometry measures precisely the relative difference between waves (ratio of amplitudes and phase
difference) with different polarizations, so it is very resistant to various fluctuations in the power of the
radiation source and the sensitivity of the receiver. Ellipsometry also makes it possible to measure the
characteristics of a sample without direct mechanical contact with it, which allows measurements to be
carried out in real time and in situ (from lat. – ”on the spot”, directly).

During the entire task, the wavelength of the incident wave is marked as λ. In the optical range, substances
do not have significant magnetic qualities, therefore, all materials under consideration have µ = 1.
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Example of an ellipsometric spectrum Ψ,∆

Sample

PhotodetectorLight source

Φ

Optical scheme of the ellipsometer: a light source, a Photodetector, and a test sample.

Attention! Place the files you want to attach to the report in the “report” folder.

Attention! It is enough to make only A7 to moving on to part B.

Part A. Theoretical principles of ellipsometry
Maxwell’s equations in a non-magnetic dielectric have the form

div D⃗ = 0 rot E⃗ = −∂B⃗

∂t

div B⃗ = 0 rot B⃗ = µ0
∂D⃗

∂t

For a dielectric:
D⃗ = ε0εE⃗

It follows from these equations that the normal components of the vectors D⃗ and B⃗ as well as the compo-
nents of the vectors E⃗ and B⃗ directed along the surface do not change at the dielectric-dielectric boundary.

In a plane wave the wave vector, the electric field vector and the magnetic field vector k⃗, E⃗ and B⃗ are
pairwise perpendicular and right-handed orientated. Also hold the following relations:

B⃗ =
1

ω
[⃗k × E⃗], |⃗k| =

√
εω/c
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where ω is the frequency of the wave. The speed of light c = 1/
√
ε0µ0. As a part of this task, we

will consider the interaction of a plane wave with layered structures and develop a general approach for
the theoretical description of such a system. Let a film with a thickness d be made of a material with
dielectric permittivity ε2 be located between two semi-infinite dielectrics with dielectric permittivity ε1
and ε3 respectively.

ε2

ε3

ε1B⃗

k⃗ y

x

(0, 0)

θ1

s-polarization:

E⃗

ε2

ε3

ε1

E⃗

k⃗

p-polarization:

y

x

θ1

B⃗

(0, 0)

The incidence of the s-polarized and p-polarized wave on the film

When a incident wave falls on the film, a reflected wave occurs in the medium ε1, a passing wave in the
medium ε3 and a superposition of waves going in different directions in the medium ε2. In s-polarization,
the direction of the electric field is fixed, so we can proceed to consider scalar complex amplitudes:

Ẽ1 = Eeik1xx+ik1yy + r · Ee−ik1xx+ik1yy

Ẽ2 = a · Eeik2xx+ik2yy + b · Ee−ik2xx+ik2yy

Ẽ3 = t · Eeik3x(x−d)+ik3yy

In p-polarization, the direction of the magnetic field is fixed, so it is easier to proceed to the consideration
of scalar complex amplitudes of the magnetic field:

B̃1 = Beik1xx+ik1yy + r · Be−ik1xx+ik1yy

B̃2 = a · Beik2xx+ik2yy + b · Be−ik2xx+ik2yy

B̃3 = t · Beik3x(x−d)+ik3yy

A1 Show that k1y = k2y = k3y.

A2 Find expressions for k1x, k2x and k3x in terms of ω, c, θ1, ε1, ε2, ε3.

A3 For a wave with s-polarization (the electric field is directed along the surface), from the bound-
ary conditions for the tangential components of the fields, obtain a system of linear equations
for the coefficients r, A, b and t.

A4 Find the reflection coefficient. Bring the answer to the form:

rs =
A+Be2ik2xd

AB + e2ik2xd
.

Express the real numbers A, B in terms of k1x, k2x and k3x.

For convenience, use the variables κix =
kix

εi
for i ∈ [1, 3].
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A5 For a wave with p-polarization (the magnetic field is directed along the surface), from the
boundary conditions for the tangential components of the fields, obtain a system of linear
equations for the coefficients r, A, b and t.

A6 Find the reflection coefficient. Bring the answer to the form:

rp =
A+Be2ik2xd

AB + e2ik2xd
.

Express the real numbers A, B in terms of k1x, k2x and k3x.

We will perform preliminary calculations of the approximate shape of the ellipsometric spectrum of a
thin layer of silicon dioxide on a silicon substrate. Until the end of Part A, we will neglect the optical
dispersion, and assume εAir = 1.00, εSi = 17.2 − 0.430i, εSiO2 = 2.13. Note that silicon has an imaginary
part of the dielectric constant responsible for absorption, due to which it is opaque. The use of complex
permittivity does not change obtained expressions, if the trigonometric functions of the complex parameter
are considered.

With the help of the A.py program, you can plot Ψ and ∆ for different angles of incidence θ1 and thicknesses
d. At the input, the program receives the name Name of the series, the angle of incidence θ1 from the air
(in degrees) and the thickness d of the dioxide film in the form of a table written in the file A_in.txt .

There is an example of filling in a table in a file A_in.txt:

Name θ1,
◦ d, nm

ex1 50 40

ex2 30 100

...
...

...

The input data is limited to 20 ◦ ≤ θ1 ≤ 80 ◦, d ≤ 250 nm. The name of the experiment should not
contain spaces and tabs. The separator between the integer and fractional parts of numbers is a dot. The
separator between the columns is a tab.

A7 Using the program A.py plot the dependence of Ψ and ∆ on λ at different angles of incidence
θ1 and thicknesses d. Conduct a quantitative study and determine at which angle of incidence
θopt the ellipsometric angle Ψ is most sensitive (the highest value |∆Ψ/∆d|) to changes in d in
the range from 10 nm to 50 nm. Find the value of θopt with an accuracy of one degree.
Since B3, use θopt as Φ to increase accuracy.

Part B. Kinetics of oxidation
In this part, the angle of incidence of the beam on the film will be indicated by Φ.

Together with a colleague, you are studying the deposition of thin oxide films on the surface of silicon
during prolonged calcination in the dry air. Real silicon Si and silicon dioxide SiO2 have optical dispersion,
so the graphs Ψ,∆ from λ that will be offered to you in this part may slightly differ from those that you
built in the part A7.

Attention! The optical dispersion of Si and SiO2 is automatically embedded in all programs that you
will work with in this part.

Your colleague was working late on the ellipsometer yesterday and forgot to write down the value of the
angle Φ. He measured the thickness of the oxide film on two samples and transmitted the measurement
results to you in files B1.txt and B2.txt.
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B1 Using the program B1.py find by hand the value Φ and the thickness d of SiO2 film. The
program B1.py reads values from a file B1.txt automatically and outputs an approximating
graph Ψ,∆ from λ, for the values of the angle Φ entered by you in degrees and the thickness d
of the dioxide film in nanometers. The input data is limited: 20 ◦ ≤ Φ ≤ 80 ◦, d ≤ 250 nm.

B2 Using the program B2.py find by hand the value Φ and the thickness d of SiO2 film. The
program works similarly to the previous B1.

For a detailed study of the oxidation rate, you can get ellipsometric data from your colleague, measured
from a real-time oxidizing silicon substrate. At the initial moment t = 0, he puts pure silicon inside the
furniture with a temperature T , and every 2 min mesures the spectrum Ψ,∆ from λ at a fixed angle Φ,
which you tell him.

In the file B_in.txt you specify the name of the experiment, the angle Φ in degrees, the temperature T in
degrees Celsius, and the duration of the experiment in minutes in the form of a table:

Name Φ,◦ T,◦ C t, min

test 50 1000 40

...
...

...
...

The input data is limited as 20 ◦ ≤ Φ ≤ 80 ◦, 800 ◦C ≤ T ≤ 1200 ◦C, t ≤ 200 min. The name of the
experiment should not contain spaces and tabs. The separator between the integer and fractional parts of
a number is a dot. The separator between the columns is a tab. Next, you run the program gen_data.exe
which simulates your colleague conducting an experiment in accelerated mode. You can interrupt the
execution of this program at any time, and the results of the measurements already performed will be
saved on your computer. You can automatically process the measurement data using the program B.py
which uses the same file B_in.txt . This program uses the results of the work gen_data.exe, selects the
value of d for each point and calculates the statistical error of this value. Keep in mind that processing
may take several minutes. The results of the program B.py are located in the /res folder in the form of
tables and graphs d(t). An example of an automatically generated program B.py tables in the /res folder:

t, min d, nm ∆d, nm

2 17.3 0.3

...
...

...

B3 Get the data for the dependence of the film thickness d of silicon dioxide on the time t during
oxidation at a temperature of t = 1000 ◦C for 120 min. Attach the graph obtained by the
program B.py to the report.

Now let us consider the theoretical aspects of thermal oxidation. According to the Deal-Grove model,
three processes are responsible for the rate of increase in the thickness of the silicon oxide layer:

1. diffusion of oxygen to the surface SiO2;

2. diffusion of oxygen through the layer SiO2;

3. oxidation reaction Si + O2 → SiO2 at the interface SiO2/Si.
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Thus, the concentration of oxygen C (dimension mol/m3) changes as it moves deeper into the sample. In
the air, far away from the substrate, the oxygen concentration is C∗; inside the silicon dioxide layer, the
concentration decreases linearly from C0 to Ci; inside silicon, the oxygen concentration is zero.

SiO2 SiAir

x

C(x)

C∗

C0

Ci

Let us consider a model for describing these processes. Specific (i.e. per unit surface area) the flow rates
of each of the three processes F1, F2, F3 (units of measurement — mole/(c · m2)) we define as follows:

1. The diffusion rate is F1 = h(C∗ −C0), where h is a certain coefficient characterizing diffusion in the
gas phase.

2. Counting the diffusion rate F2 = D
d
(C0 − Ci), where D is the diffusion coefficient of oxygen in the

dioxide, depending on the temperature T , and d is the thickness of the silicon dioxide film.

3. The rate of the oxidation reaction F3 = kCi, where k is the constant of the rate of the oxidation
reaction, depending on the temperature T .

B4 Express the growing velocity v of film thickness change in terms of the oxidation reaction rate
F3, the molar mass µSiO2 and the density ρSiO2 of silicon dioxide. Assume that the air-dioxide
boundary does not move.

B5 Assuming the problem to be quasi-stationary (the establishment times of all processes are much
less than the film rise time), express C0 and Ci in terms of C∗, the velocity constants h, k, D
and the film thickness d.

B6 Get the differential equation for the thickness d of the dioxide film and get its solution with
the initial condition d(t0) = d0 in the form

d2 + Ad = B(t+ τ),

where τ contains information about the initial conditions, and the constants A and B are
related to the kinetics of oxidation. Express A and B in terms of h, k, D, C∗, µSiO2 and ρSiO2 .

Experiments show that blowing with air (changing the profile C(x) above the surface), doesn’t change the
rate of the process. Therefore we will consider h ≫ k.

At the beginning of the oxidation process, the stationary model is not applicable, so it is used starting from
the minimum thickness d0 = 25 nm. Enter into the program B7.py the data from the file B_in.txt and
get the parameters B and B/A automatically. If the maximum film thickness obtained in the experiment
is less than d0, then the program B7.py outputs ”Final layer is too thin to approximate”.

If the program returns the error ”FileNotFoundError”, run the files gen_data.exe and B.py sequentially
with the input data you need, previously entered in the B_in.txt.
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B7 Get the values of the parameters B and B/A for five different temperatures T . Save the results
into a file B8_in.txt in the form of a table.

T,◦ C B, nm2/min ∆B, nm2/min B/A, nm/min ∆(B/A), nm/min

1000 174 4 1.21 0.02

...
...

...
...

...

The dependence of the reaction rate constant k on temperature T is associated with the energy ∆Eb of
breaking the bond Si− Si in a silicon crystal, and then the relation between them:

k ∝ e−∆Eb/kBT .

The diffusion coefficient in solids is also related to temperature via the so-called activation energy ∆Ea,
and the quantitative dependence has the form:

D ∝ e−∆Ea/kBT

A qualitative diffusion scheme in a solid and the meaning of energy ∆Ea.

Using the program B8.py you can plot graphs ln(B ·min/nm2) from 1/T and ln(B/A ·min/nm)from 1/T
and determine the parameters of the automatically drawn lines.

Boltzmann constant kB = 1.38 · 10−23 J/C, elementary charge e = 1.60 · 10−19 C.

B8 Determine the values of ∆Eb and ∆Ea in electron volts. Attach the linearized graphs to the
report.
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Solution
A1. A given system of equations for scalar complex amplitudes must be performed at any point of the
interface between media:

∀y Ey(x = −0) = Ey(x = +0);

{
Ey(x = −0) = f · e−ik1yy, f ̸= f(y),

Ey(x = +0) = g · e−ik2yy, g ̸= g(y).

This necessarily follows k1y = k2y. Similarly, considering the second boundary, we obtain k2y = k3y.

A2. Using the expression for k and the equality ky = k1y = k2y = k3y:

k =
√
k2
1x + k2

y ⇒ k1x =

√
ε1ω

2

c2
− k2

y =

√
ε1ω

c
cos θ1.

Similarly,

k2x =

√
ε2ω

c
cos θ2 =

√
ε2ω

c

√
1−

ε1

ε2
sin2 θ1,

k3x =

√
ε3ω

c
cos θ3 =

√
ε3ω

c

√
1−

ε1

ε3
sin2 θ1.


k1x =

√
ε1ω

c
cos θ1,

k2x =
ω

c

√
ε2 − ε1 sin

2 θ1,

k3x =
ω

c

√
ε3 − ε1 sin

2 θ1

A3. Let’s write down the boundary conditions for boundary 1-2 on the tangential components E and B,
respectively, counting x = 0:

E + rE = aE + bE ,

k1xE − k1xEr = k2xaE − k2xbE .

And for the boundary 2-3:
aEeik2xd + bEe−ik2xd = tE ,

k3xtE = k2xEaeik2xd − k2xEbe−ik2xd.

Thus, we obtained a system of equations:
1 + r = a+ b,

k1x(1− r) = k2x(a− b),

aeiϕ + be−iϕ = t,

k3xt = k2x(ae
iϕ − be−iϕ),

where the notation ϕ = k2xd is introduced.


1 + r = a+ b,

k1x(1− r) = k2x(a− b),

aeik2xd + be−ik2xd = t,

k3xt = k2x(ae
ik2xd − be−ik2xd).
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A4. From the A3, we get: 

t = (aeiψ − be−iψ)
k2x
k3x

,

a = be−2iψ · k2x + k3x
k2x − k3x

,

a(k1x + k2x) + b(k1x − k2x) = 2k1x,

r =
a(k1x − k2x) + b(k1x + k2x)

2k1x
.

Deciding, we come to the result:

rs =
(k1x − k2x)(k2x + k3x) + (k1x + k2x)(k2x − k3x)e

2iϕ

(k1x − k2x)(k2x − k3x)e2iϕ + (k1x + k2x)(k2x + k3x)
.

Introducing the notation 
A =

k2x + k3x
k2x − k3x

,

B =
k1x + k2x
k1x − k2x

.

we get the expression reduced to the required form.

A5. Similarly, A3 records the conditions at the two interfaces, taking into account the connection of
electric and magnetic fields in the EM wave: √

εε0µ0E = B:

1 + r = a+ b,
k1x
ε1

(1− r) =
k2x
ε2

(a− b),

aeik2xd + be−ik2xd = t,
k3x
ε3

t =
k2x
ε2

(aeik2xd − be−ik2xd).

Or, taking into account the reinterpretations proposed in the condition:


1 + r = a+ b,

κ1x(1− r) = κ2x(a− b),

aeiϕ + be−iϕ = t,

κ3xt = κ2x(ae
iϕ − be−iϕ)

A6. Note that the system in A5 coincides with the system from A3 up to the replacement of κix ↔ kix.
Accordingly, we immediately write down the answer:

rp =
A+Be2iϕ

AB + e2ϕ
,


A =

κ2x + κ3x

κ2x − κ3x

,

B =
κ1x + κ2x

κ1x − κ2x

.

A7. We will receive graphs for three thicknesses: 10, 20 and 30 nm. At low angles of incidence, it can be
seen that the maximum range of Ψ is hundredths degrees, while θ ∼ 70◦, the maximum range of Φ is tens
of degrees . The maximum sufficiency is reached when

θopt = 77◦.

The corresponding graphs for comparison are given below.
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Dependencies for the angle of incidence of 20◦ and film thicknesses of 10 nm, 20 nm and 30 nm.

A comparison of the dependencies for the angles of incidence of 75◦ and 77◦ and the film thickness of 10 nm, 20
nm and 30 nm.
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A comparison of the dependencies for the angles of incidence of 77◦ and 79◦ and the film thickness of 10 nm, 20
nm and 30 nm.

θopt = 77◦

B1.

The graph for Φ = 71◦, d = 67 nm.
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Let us describe the search algorithm for optimal Φ and d. First enter arbitrary Φ and d in B1.py. Next,
on each step we try to change Φ or d a bit, and look at the "error" given out by the program B1.py. If the
error decreases, we continue to change Φ or d in the same direction (e.g. if we have lowered Φ by 1◦, and
the error have decreased, then on the next step we also lower Φ by 1◦). Finally, we will reach such Φ and
d that any small changes of them lead to the increasing of the error, i.e. we reach the minimal possible
error. It means that we have found optimal Φ and d.

One can see on the graph how fitting data correspond to the colleague’s ones, but the numerical parameter
of the approximation quality is the error giving by the program B1.py.

Φ = 71.1◦ d = 66.7 nm

B2. The search algorithm for optimal Φ and d coincides with the such one in part B1.

The graph for Φ = 57◦, d = 232 nm.

Φ = 57◦ d = 232 nm

B3. Set name = b3, Phi = 77, T = 1000, tmax = 120 in B_in.txt, then run gen_data.exe and B.py
consistently. In "res" folder we get the file with desired graph. Note that we substitute Φ = θopt from A7
in order to increase the quality of the experiment.
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B4. Consider a small time period ∆t and a part of SiO2-Si border having the area S. Then the mass
of the Si oxided during ∆t equals ∆m = F3∆t S µSiO2 . On the other hand, the SiO2-Si border will move
by v∆t, so the mass of SiO2 appeared equals ∆m = ρSiO2 S v∆t. Thus ρSiO2 v S∆t = F3∆t S µSiO2 , so
ρSiO2 v = F3 µSiO2 .

v = F3
µSiO2

ρSiO2

B5. Stationarity conditions gives F1 = F2 = F3, i.e. h(C∗ − C0) =
D
d
(C0 − Ci) = kCi. From the second

equality we get C0 = (1 + kd
D
)Ci. Substitute it in h(C∗ − C0) = kCi and get h(C∗ − (1 + kd

D
)Ci) = kCi,

what implies C∗ = (k
h
+ kd

D
+ 1)Ci, so

Ci =
C∗

1 + k
h
+ kd

D

, C0 =

(
1 +

kd

D

)
Ci = C∗ 1 + kd

D

1 + k
h
+ kd

D

C0 = C∗
1 +

kd

D

1 +
k

h
+

kd

D

, Ci = C∗ 1

1 +
k

h
+

kd

D

B6. From B4 we have v = ḋ =
F3µSiO2

ρSiO2
=

kCiµSiO2

ρSiO2
. Taking into account the expression for Ci obtained in

B5 we get

ḋ = C∗µSiO2

ρSiO2

1
1
k
+ 1

h
+ d

D

or, equivalently,
ḋ · d
D

+ ḋ ·
(
1

k
+

1

h

)
− C∗µSiO2

ρSiO2

= 0



ISPhO July, 2024

Note that the left hand side equals

d

dt

(
d2

2D
+ d ·

(
1

k
+

1

h

)
− t · C∗µSiO2

ρSiO2

)
= 0

So
d2

2D
+ d ·

(
1

k
+

1

h

)
− t · C∗µSiO2

ρSiO2

= const

where const can be found from the initial consition d(t0) = d0. Namely,

const =
d20
2D

+ d0 ·
(
1

k
+

1

h

)
− t0 · C∗µSiO2

ρSiO2

So we get

d2 + 2D ·
(
1

k
+

1

h

)
· d = 2DC∗µSiO2

ρSiO2

(t+ τ)

where τ =
const·ρSiO2

2DC∗µSiO2
.

A = 2D

(
1

k
+

1

h

)
, B = 2DC∗µSiO2

ρSiO2

B7. First create data necessary for B7.py. Set T , Φ = θopt = 77◦, tmax = 120 in B_in.txt, then run
gen_data.exe and B.py, and finally, run B7.py five times, on each time entering name, T and Φ from
B_in.txt. We write every output of B7.py in the file B8_in.txt and get the table below.

Note that even for T = 850◦C we get an error "Final layer is too thin to approximate", and for T = 900◦C
we get too high error rate, so it is reasonable to start with T = 950◦C with a step 50◦C.

T , ◦C B, nm2/min ∆B, nm2/min B/A, nm/min ∆(B/A), nm/min

950 85 6 0.780 0.044

1000 160 6 1.017 0.027

1050 251 4 2.310 0.044

1100 389 2 4.636 0.070

1150 551 4 7.751 0.188

B8.

First plot the graphs lnB
(
1
T

)
and ln B

A

(
1
T

)
using the program B8.py. In the console one can see the slopes

of proposed linear approximations. Namely, the slope coefficient of lnB
(
1
T

)
equals −(14671 ± 625) ◦C,

and the slope coefficient of ln B
A

(
1
T

)
equals −(23418± 1730) ◦C (where K means one kelvin).

We get from B6 that
B = 2DC∗µSiO2

ρSiO2

∝ e
−∆Ea

kBT

Thus the slope coefficient of the graph lnB
(
1
T

)
equals −∆Ea

kB
. So ∆Ea = (2.208 ± 0.086) · 10−19 J, or,

equivalently,

∆Ea =
(2.208± 0.086) · 10−19

1.60 · 10−19
eV = (1.38± 0.05) eV

Next, h ≫ k implies A ≈ 2D
k

, so
B

A
≈ kC∗µSiO2

ρSiO2

∝ e
−∆Eb

kBT
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the slope coefficient of the graph ln B
A

(
1
T

)
equals −∆Eb

kB
. So ∆Eb = (3.23± 0.23) · 10−19 J, or, equivalently,

∆Eb =
(3.23± 0.23) · 10−19

1.60 · 10−19
eV = (2.02± 0.14) eV

∆Ea = (1.38± 0.05) eV, ∆Eb = (2.02± 0.14) eV


